37 research outputs found

    On some provably correct cases of variational inference for topic models

    Full text link
    Variational inference is a very efficient and popular heuristic used in various forms in the context of latent variable models. It's closely related to Expectation Maximization (EM), and is applied when exact EM is computationally infeasible. Despite being immensely popular, current theoretical understanding of the effectiveness of variaitonal inference based algorithms is very limited. In this work we provide the first analysis of instances where variational inference algorithms converge to the global optimum, in the setting of topic models. More specifically, we show that variational inference provably learns the optimal parameters of a topic model under natural assumptions on the topic-word matrix and the topic priors. The properties that the topic word matrix must satisfy in our setting are related to the topic expansion assumption introduced in (Anandkumar et al., 2013), as well as the anchor words assumption in (Arora et al., 2012c). The assumptions on the topic priors are related to the well known Dirichlet prior, introduced to the area of topic modeling by (Blei et al., 2003). It is well known that initialization plays a crucial role in how well variational based algorithms perform in practice. The initializations that we use are fairly natural. One of them is similar to what is currently used in LDA-c, the most popular implementation of variational inference for topic models. The other one is an overlapping clustering algorithm, inspired by a work by (Arora et al., 2014) on dictionary learning, which is very simple and efficient. While our primary goal is to provide insights into when variational inference might work in practice, the multiplicative, rather than the additive nature of the variational inference updates forces us to use fairly non-standard proof arguments, which we believe will be of general interest.Comment: 46 pages, Compared to previous version: clarified notation, a number of typos fixed throughout pape

    Fit Like You Sample: Sample-Efficient Generalized Score Matching from Fast Mixing Markov Chains

    Full text link
    Score matching is an approach to learning probability distributions parametrized up to a constant of proportionality (e.g. Energy-Based Models). The idea is to fit the score of the distribution, rather than the likelihood, thus avoiding the need to evaluate the constant of proportionality. While there's a clear algorithmic benefit, the statistical "cost'' can be steep: recent work by Koehler et al. 2022 showed that for distributions that have poor isoperimetric properties (a large Poincar\'e or log-Sobolev constant), score matching is substantially statistically less efficient than maximum likelihood. However, many natural realistic distributions, e.g. multimodal distributions as simple as a mixture of two Gaussians in one dimension -- have a poor Poincar\'e constant. In this paper, we show a close connection between the mixing time of an arbitrary Markov process with generator L\mathcal{L} and an appropriately chosen generalized score matching loss that tries to fit Opp\frac{\mathcal{O} p}{p}. If L\mathcal{L} corresponds to a Markov process corresponding to a continuous version of simulated tempering, we show the corresponding generalized score matching loss is a Gaussian-convolution annealed score matching loss, akin to the one proposed in Song and Ermon 2019. Moreover, we show that if the distribution being learned is a finite mixture of Gaussians in dd dimensions with a shared covariance, the sample complexity of annealed score matching is polynomial in the ambient dimension, the diameter the means, and the smallest and largest eigenvalues of the covariance -- obviating the Poincar\'e constant-based lower bounds of the basic score matching loss shown in Koehler et al. 2022. This is the first result characterizing the benefits of annealing for score matching -- a crucial component in more sophisticated score-based approaches like Song and Ermon 2019.Comment: 39 page
    corecore